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tions are much less affected by differences in tem- 
perature than the average values. This implies that, 
at room temperature, a relatively large fraction of the 
observed bond lengths is only marginally influenced 
by thermal motions. 

For the methyl group, bond shortening reduces 
only slowly upon cooling and is still significant at 
liquid-nitrogen temperatures. We associate this with 
the rotational freedom of the methyl group. For the 
other connectivities at T -  100 K, the observed bond 
lengths have already (or almost) reached the spectro- 
scopically determined values (Fig. 3). 

'True' chemical differences of C-H bond lengths 
in different connectivities are best studied at liquid- 
helium temperatures, but can also be observed at 
room temperature (Fig. 2). In general, the C-H bond 
length should increase with increasing (positive) par- 
tial charge on the C atom. This is actually observed 
in the present data set (Table 2), where the longest 
(dcH) is found for connectivity (5). 

This study was suppor ted  by the Bundes- 
minister ium fiir Forschung und Technologie ,  FKZ 03 
SA3 FUB, and by the Fonds der Chemischen  
Industrie.  
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Abstract 

A formulation of dynamical X-ray diffraction is given 
for use when studying X-ray diffraction intensities 
when the real part of the scattering factor is zero. 
Based on these formulae, the diffraction induced by 
the imaginary part of the scattering factor alone is 
studied for both the Bragg and Laue cases. 

1. Introduct ion  

Many studies using dynamica l  theories of  X-ray 
diffraction (Zachariasen,  1945; James, 1963; Batter- 

0108-7673/93/030384-05506.00 

man & Cole, 1964; Miyake, 1969; Kato, 1974) have 
been carried out for absorbing crystals as well as for 
crystals without absorption. Some of the theories are 
not applicable to the case when the absorption is 
quite large or even the case when the real part of the 
scattering factor is zero. If we denote the normal 
scattering factor by fo, which depends on the 
reciprocal-lattice vector h, and the real and the 
imaginary parts of the anomalous scattering factor 
by f '  and f",  respectively, f" is usually assumed to 
be small compared with f0 +f , .  By taking the absorp- 
tion effect as a perturbation, most of the experimental 
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observations have been explained even in the case of 
strong absorption. 

With X-rays from a synchrotron-radiation source 
and a tuned X-ray energy (hw), it is possible to make 
the real part of the scattering factor zero for some 
reflections from monoatomic crystals and some com- 
pound crystals. If the real part of the anomalous 
scattering factor f ' ( to)  is changed so as to make the 
value of f °(h)+f ' (oJ)  zero, the diffraction is induced 
by only the imaginary part of the anomalous scatter- 
ing factor f"(oJ). 

In this paper, we give a formulation of dynamical 
X-ray diffraction that is applicable to general cases 
including the case when the real part of the scattering 
factor is zero and the imaginary part is nonzero. We 
calculate reflection intensities both in the Bragg case 
for semi-infinite crystals and in the Laue case. 

2. Theory 

The coherent scattering factor in a crystal is expressed 
by using the Fourier component of electron polariza- 
bility Xh (X4rr) in the atomic unit (h = m = e = 1) as 

Xh = Xhr + iXhi. (1)  

The real and the imaginary parts are given to a good 
approximation by 

Xh~ = --(47r/ voJ 2) X ( f °  + f~ ) exp ( i2zrh " rj ) Tj, (2) 
J 

Xhi=--(aT"l"/VtO 2) Yf~ '  exp (i2~rh • r/) Tj. (3) 
J 

Here, v is the volume of the unit cell, rj is the position 
vector of the j th atom in a unit cell and Tj is the 
correction factor due to thermal vibration. By express- 
ing the phases of ,¥hr and Xhi as Olhr and Ceh~, respec- 
tively, the phase difference between the two is 

(~ = O[" h i - -  Og h r  . (4) 

We write the product of Xh and X-h as 

XhX-h=lXhl2(1- -b2+i2pcos t~) .  (5)  

Here, 

Ix.I 2 = IX.rl = + Ixh,I ~, (6) 

b = 2'/21Xh, IIIxhI. (7) 

P = I x d  IX., I/IXh [ 2. (8) 

The parameter b has the minimum value zero when 
Xhi = 0 and the maximum value 21/2 when ghr = 0. The 
parameter p becomes zero when either Xhr or gh~ is 
zero. The dispersion surface in the two-beam approxi- 
mation is shown in Fig. 1, which defines the X and 
Y axes. The resonance error W, which expresses the 
degree of difference from the exact Bragg condition, 
is given by 

W = - X o ( s i n  20)/[l(cos 01)(COS 02)l'/2KorlXhl], (9) 

where 0 is the diffraction angle and the parameters 
Xo, 01 and 02 are shown in Fig. 1. K0r is the real part 
of the wave vector inside the crystal. Note that W 
defined in this way is applicable to the cases in which 
either Xhr or Xhi is zero. To simplify the intensity 
formula, we define 

g=xo, / Ixhl .  (10) 

g ' =  g(sin 0)(cos fl)/l(cos 01)(cos 02)11/2. (11) 

The quantity g is nonpositive. 
In the following, we consider only the (r-polariz- 

ation case. The discussion for 7T polarization is the 
same except that we multiply the polarizability Xh by 
Icos 201. 

2.1. The Bragg case 

The reflectively, i.e. the ratio of the diffraction 
intensity, Ph, and the incident intensity, Po, is 

P d P o = k [ H - ( n 2 - 1 ) ' / 2 ] ,  (12) 

where 

k = ( 1 - 2 p s i n  3 ) / [ (1 -b2 )a+4p2  cos 2 3] '/2, (13) 

and 

[(A2+ B2)'/2+ W2 + g '2] 

n = [ ( 1 - b 2 ) 2 + 4 p 2  cos 2 8],/2" (14) 

In (14), A and B are given by 

A =  W 2 - 1 - g ' 2 + b  2, (15) 

B = 2 ( g ' W - p  cos 3). (16) 

Owing to the factor 2p sin 3 in (13), the reflection 
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Fig. 1. Schematic diagram of the dispersion surface. The origin of 
the reciprocal vector is 0, the diffraction point is H and the Laue 
point is L. k~, and ko 2 are the wave vectors of the diffracted and 
the transmitted beams, respectively. 
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intensity Ph/Po from the front surface is different 
from that from the back surface for a polar crystal. 
When Xh, = O, P h /  Po becomes 

Ph/ Po= l - (  I2 -1 )  1/2, (17) 

where 

l=[ (wE+1-g 'E)2+4g 'EW211/2+ WE+g '2. (18) 

If Xh, = 0, the intensity in (17) does not have polarity 
dependence. The Friedel law holds if Xhi = O. 

In Fig. 2, the reflectivities Ph/Po are shown as a 
function of W defined in (9) from - 3  to 3 in the 
symmetric-reflection condition. When gh, = 0 and g' = 
-1.0,  the rocking curve of reflectivity Ph/Po has the 
maximum value 1 when W = 0 and is symmetric with 
respect to W = 0  (curve 1). When Xh,=O, the 
minimum value of Ig'l is 1. By increasing Ig'l, the peak 
height of the rocking curve becomes small. The rock- 
ing curve for g ' = - 1 . 1  is shown in curve 6. 

Other rocking curves are also shown in Fig. 2 for 
the cases Ixh,I - IXhi[/2 (curve 2), Ixh, I - Ixh,I (curve 3), 
Ix~,l=21x~,l (curve 4) and IXh,l=0 (curve 5). The 
values of the parameters b, p and g for these cases 
are shown in Table 1. If [Xh,I = 0, the rocking curve 
is maximum when W = 0, as shown in curve 1. By 
increasing [Xh,[/IXh~l, the peak position shifts to nega- 
tive values of W, as shown in curves 2 to 4. When 
Ixo,I = 0, P~/Po is unity for w between -1  and 1. The 
change of the ratio Ix~,l/Ix~,l corresponds to the 
change of X-ray energy just below the absorption 
edge: Ixh,I changes greatly and ]Xh~] is almost constant. 

As is well known (Hirsch & Ramachandran, 1950), 
the peak of the rocking curve decreases and the peak 

Table 1. Parameter values and conditions on Xh, and 
Xhi for the curves in Fig. 2 

Curve  b p g Cond i t ion  

1 1.4142 0.0 - 1.0 Xh, = 0 
2 1.2649 0.4 --0.8994 IX,,f = IXh, I/2 
3 1.0 0.5 --0.7071 IX,,I----IX,,,I 
4 0.6325 0.4 -0.4472 IXh,I = 21xh,I 
5 0.0 0.0 0.0 Xh~ = 0 

position moves toward the center ( W = 0 )  with 
increasing [g'l from 2 to 4 for each curve. 

The integrated reflecting power in the angle-disper- 
sive mode R h is given by 

R h =({COS 02I/COS 01) l /2 ( [Xh l / s in  20) j" ( P  h~ Po)d W. 

(19) 

This formula is applicable to both the Bragg and the 
Laue cases. It is noted that the coefficient of (19) 
contains [Xh] rather than [Xh,[ (Kato, 1968). In previous 
works such as that of Hirsch & Ramachandran (1950), 
Rh contains IXh,[ in the coefficient and seems to be 
zero when IXh,[ = 0, although it is not zero as is clearly 
seen in (19). 

In the Bragg case when Ig'l >> 1, Rh has the same 
value as that given by Hirsch & Ramachandran and 
agrees with the value from a mosaic crystal. However, 
when [Xh,[=0, the reflecting power based on a 
dynamical theory that takes account of the absorption 
effect (Afanas'ev & Perstnev, 1969) is 20% larger than 
that from a mosaic crystal for b = 21/2 and Ig'l---1.0. 
The integrated reflecting power gives better agree- 
ment with that from a mosaic crystal when Ig'l is more 
than 2.0. 
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Fig. 2. The  rock ing  curves f rom a semi-infinite crystal  in the Bragg 
case. The  values  of  b, p, g, Xh, and  Xh~ for  curves 1 to 5 are given 
in Tab le  1. Xh, = 0 and g = -1 .1  for  curve 6. 

2.2. The Laue case 

The reflectivity of the diffraction h is given by 

Ph/Po = exp (-/~H')(1 - 2p sin 8)[sin 2 (sH Re L ~/2) 

+sinh 2 (sH Im L1/2)]/]LI/212 , (20) 

where H is the crystal thickness. The linear absorption 
coefficient/z is 

1,1. = - 2  7rKoxoi, (21) 

where Ko is the wave number. Instead of A in (15), 
we define A for the Laue case as 

A = W 2 + 1 - g,2 _ b 2. (22) 

The quantity L in (22) is given by 

ILl~212= (A 2 + B2) 1/2, (23) 

Re L 1 / E = [ A + ( A 2 +  B2)1/211/2/21/2, (24) 

Im L ~/2= ± [ - A + ( A E +  B2)l/2]~/2/21/2, (25) 

where B is the same as in (16). In (25), the ± 
sign means that we take the positive value when 
g ' W - p c o s  8 > 0  and the negative value when 
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g ' W -  p cos 8 < 0. The parameters s and H '  in (20) are 
given by 

s--  ~Ko,lXhl/l(cos 0,)(cos 02)11/2, ( 2 6 )  

H ' =  H(cos  0)(sin f l ) / (cos  01)(cos 02). (27) 

If we consider the symmetric reflection condition 
under g' = 0 and Xhr = 0, the reflectivity is simplified to 

Ph/Po = exp ( - / z n ' ) { s i n  2 [sH( W 2-1)1/2]}/( W 2 - 1). 

(28) 

If we set W = O, the reflectivity is expressed by 

Ph/Po = exp ( - / z H ' ) [ e x p  (2sH) + exp ( - 2 s H )  + 2]/4. 

(29) 

In (29), the first term gives the abnormal transmission 
and the second term gives the abnormal absorption. 
For sH >> 1, (29) becomes 

Ph/Po=eXp[ - -p .H ' ( l+ l /g ) ] /4  (30) 

and the abnormal transmission term becomes the 
maximum 0.25 when Ixh, l=lxo,I, i.e. g = - l .  The 
reflectivities calculated from (28) are shown in Fig. 
3 for g = -1 .0  by changing the thickness H. The value 
of  sH is 0.5 for curve 1, 1.0 for curve 2 and 5.0 for 
curve 3. Since the rocking curves are symmetric with 
respect to W = 0 ,  only curves for positive W are 
shown, in the range 0 -  < W_< 12. Each curve has its 
maximum when W = 0. With increasing sH, the peak 
value becomes large and the width of the peak 
becomes narrow owing to abnormal absorption. In 
the limit of  large sH, the maximum value becomes 
0.25, as can be seen from (30). In curves 1 and 2 in 
Fig. 3, peaks also appear for large W. These peak 
heights decrease with increasing sH. As clearly seen 

_ _  i0-2] 

lZ- 

g= -1 

1 sH =0.5 

2 sH=I .0 

3 sH=5.O 

2 4 6 8 0 
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Fig. 3. The rocking curves of the diffracted beam in the Laue case 
for Xh~ = 0 and different values of sH. 

in Fig. 3, Pendell6sung fringes are observed even when 
Xh, = 0, which means the value of ~Xhi[ can be deter- 
mined in this case by measuring the rocking curve. 
If [g[ is increased from 1.0 by increasing the tem- 
perature, each peak height decreases systematically 
but the position does not change. 

In Fig. 4, the integrated reflecting powers in the 
Laue case are shown for six values of g as a function 
of sH when [Xhr[ = 0. The curves are maximum around 
sH = 0.5 and decrease slowly when Igl = 1.0. For Igl > 
1.0, the curves decrease steeply as sH increases from 
1.0. It is noted that there are no PendeIlrsung fringes 
in these intensities. In practice, the values of g and 
[Xhi[ can be determined by measuring the integrated 
reflection intensities as a function of sH. 

Next we discuss the transmitted beam intensity. If 
the transmitted X-ray intensity is denoted by Pd, 
Pd/Po is given by 

P ~ l P o  = exp ( - / x H ' )  

x {[(ILl 2 -  W 2 - g  '2) cos (2sH Re L '/2) 

+(ILl 2 + w 2 + g,2) cosh (2sH Im L'/2)]/2 

+ (g'  Re L 1/2 - W Im L 1/2) sin (2sH Re L 1/2) 

+ ( W Re L 1/2 + g' Im L 1/2) 

xs inh  (2sH Im L1/2)}/[L1/2[ 2. (31) 

In the case of  Xh, = 0 and the symmetric reflection, 
(31) is expressed by 

Pal P0 = [exp ( - / z H ' ) / 2 ] {  - c o s  [ 2 s n (  W 2-1 ) ' / 2 ]  

+ 2 w E - 1 } / ( W 2 - 1 ) .  (32) 

R(sHI 

1 ~2 
0 . ~  1 . ~  2 . 0  3 . ~  4 o ~  S . Z  

sH 

Fig. 4. The integrated reflecting powers R(sH) of the diffracted 
beam in the Laue case for Xhi = 0 for different values ofg. R(sH) 
is given by the integration term of (19). 
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For W =  0, (32) becomes 

9Pal P o :  [exp ( - / zH ' ) /2 ]{ [exp  (2sH) 

+exp  ( - 2 s H ) ] / 2 - 1 } .  (33) 

The first term in (33) gives the abnormal transmission 
and the second term gives the abnormal absorption. 
For sH >> 1, the abnormal transmission becomes 0.25, 
as for the diffracted beam. Pd/Po in (32) is symmetric 
with respect to W = 0. The rocking curves calculated 
from (32) for g = -1 .0  are shown in Fig. 5 for different 
values of sH. As sH increases, the width of the peak 
around W = 0 becomes narrow and the peak becomes 
sharp. For large sH, PendelliSsung fringes are clearly 
seen, although the intensities are quite small. 

3. Summary 

We have derived formulae for dynamical X-ray 
diffraction intensities that are applicable to the case 
of strong absorption when the real part of the scatter- 

P-~ iE 
Po 

sH 

! i , 

g l 2 3 4 E 
w 

Fig. 5. The rocking curves of  the transmitted beam in the Laue 
case for Xm = 0 and different values of sH. 

ing factor is zero (Xhr  =0) ,  as well as to the no- 
absorption case. Based on the formulae, we have 
discussed the diffraction by the imaginary part of the 
atomic scattering factor only, i.e. Xhr = O. 

We have obtained the following results. Firstly, for 
a polar crystal, the information on polarity is lost 
when Xhr = 0 as it is when Xhi = 0. The ratio of reflec- 
tivities from the front and the back surfaces is expec- 
ted to be maximum when IXhr[=lxhil and the 
maximum value of p in (8) is 0.5. If either IXh~l or 
IXhil becomes relatively large, the intensity ratio due 
to polarity becomes small. 

Secondly, the integrated reflecting power in (19) 
has a finite value even when ]Xhr[ is zero. In the Bragg 
case, the rocking cuve of the diffracted beam is quite 
sharp owing to the scattering factor ]Xh~[ and is sym- 
metric with respect to W = 0. The integrated reflecting 
power is not always the same as that from a mosaic 
crystal, as reported in previous works, when IXoi[ and 
IXh~l become large (Hirsch & Ramachandran,  1950). 

Finally, in the Laue case, the rocking curves of 
both the transmitted and the diffracted beams are 
symmetric with respect to W = 0 and show Pendel- 
li~sung fringes. The abnormal transmission of 25% is 
observed in both of these beams when g = - 1 . 0  and 
s H >  1. 

The authors thank M. Yoshizawa, K. Ehara and 
Professor T. Nakajima for their cooperation in the 
preliminary experiment at the Photon Factory, KEK, 
and R. Negishi for his help with calculations. 
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